Asymptotic expansions of Hankel transforms of functions with logarithmic singularities
نویسندگان
چکیده
منابع مشابه
Plurisubharmonic functions with logarithmic singularities
© Annales de l’institut Fourier, 1988, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملThe Asymptotic Chebyshev Coefficients ior Functions with Logarithmic Enclpoint Singularities: Mappings ad Singular Basis Functions
When a function is singular at the ends of its expansion interval, its Chebyshev coefficients a, converge very poorly. We analyze three numerical strategies for coping with such singularities of the form (1 + x)~ log(1 f x), and in the process make some modest additions to the theory of Chebyshev expansions. The first two numerical methods are the convergence-improving changes of coordinate x =...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولAsymptotic expansions of Legendre series coefficients for functions with endpoint singularities
Avram Sidi Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000, Israel E-mail: [email protected]; URL: http://www.cs.technion.ac.il/~asidi/ Abstract. Let ∑∞ n=0 en[f ]Pn(x) be the Legendre expansion of a function f (x) on (−1, 1). In this work, we derive an asymptotic expansion as n → ∞ for en[f ], assuming that f ∈ C∞(−1, 1), but may have arbitrary algebra...
متن کاملA Note on Asymptotic Evaluation of Some Hankel Transforms
Asymptotic behavior of the integral '((w) = r e-"%(wx)f(x2)xdx is investigated, where J0(x) is the Bessel function of the first kind and w is a large positive parameter. It is shown that IAw) decays exponentially like e~y"' , y > 0, when/(z) is an entire function subject to a suitable growth condition. A complete asymptotic expansion is obtained when /( z ) is a meromorphic function satisfying ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1977
ISSN: 0898-1221
DOI: 10.1016/0898-1221(77)90084-0